GCE AS/A level

0978/01

MATHEMATICS - FP2
 Further Pure Mathematics

P.M. WEDNESDAY, 18 June 2014

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The function f is defined by

$$
f(x)=\frac{x^{2}+1}{x\left(x^{2}+2\right)}
$$

(a) Determine whether f is even, odd or neither even nor odd.
(b) Express $f(x)$ in partial fractions.
2. Using the substitution $u=\sin ^{2} x$, evaluate the integral

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin 2 x}{\sqrt{4-\sin ^{4} x}} \mathrm{~d} x
$$

Give your answer in the form $\frac{\pi}{k}$, where k is a positive integer.
3. The function f is defined by

$$
\begin{array}{ll}
f(x)=\mathrm{e}^{2 x} & \text { for } x<0 \\
f(x)=(x+1)^{2} & \text { for } x \geqslant 0
\end{array}
$$

Determine whether or not
(a) f is continuous when $x=0$,
(b) the derivative f^{\prime} is continuous when $x=0$.
4. The complex number z is given by $1+\mathrm{i} \sqrt{3}$.
(a) Find the modulus and the argument of z.
(b) Find the three cube roots of z, giving your answers in the form $x+\mathrm{i} y$ with x and y correct to three decimal places.
5. Find the general solution to the equation

$$
\begin{equation*}
\sin \theta+\sin 5 \theta=\cos 2 \theta \text {. } \tag{8}
\end{equation*}
$$

6. Using de Moivre's Theorem, show that for $\sin \theta \neq 0$,

$$
\frac{\sin 6 \theta}{\sin \theta}=a \cos ^{5} \theta+b \cos ^{3} \theta+c \cos \theta
$$

where a, b, c are constants whose values are to be determined.
Hence determine the limiting value of $\frac{\sin 6 \theta}{\sin \theta}$ as θ tends to π.
7. The ellipse E has equation

$$
4 x^{2}+9 y^{2}=36
$$

(a) Find
(i) the eccentricity,
(ii) the coordinates of the foci.
(b) (i) Show that the point $P(3 \cos \theta, 2 \sin \theta)$ lies on E for all values of θ.
(ii) Show that the equation of the tangent to E at P is

$$
3 y \sin \theta+2 x \cos \theta=6 \text {. }
$$

(iii) This tangent meets the x-axis at R and the y-axis at S. The midpoint of $R S$ is denoted by M. Determine the equation of the locus of M as θ varies.
8. The function f is defined by

$$
f(x)=\frac{(x+4)(x-2)}{(x-4)}
$$

(a) Write down the coordinates of the points of intersection of the graph of f and the coordinate axes.
(b) Determine the equation of
(i) the vertical asymptote on the graph of f,
(ii) the asymptote that is not parallel to a coordinate axis.
(c) Find the coordinates of the stationary points on the graph of f.
(d) Sketch the graph of f and its asymptotes.
(e) The set $S=[-7,3]$. Determine
(i) $f(S)$,
(ii) $f^{-1}(S)$.

END OF PAPER

